Title of article :
“Dedolomitization reactions” driven by anthropogenic activity on loessy sediments, SW Hungary
Author/Authors :
Fernando A.L. Pacheco، نويسنده , , Teodora Szocs، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
18
From page :
614
To page :
631
Abstract :
In the Szigetvár area, SW Hungary, shallow groundwaters draining upper Pleistocene loess and Holocene sediments are considerably contaminated by domestic effluents and leachates of farmland fertilizers. The loess contains calcite and dolomite, but gypsum was not recognized in these sediments. The anthropogenic inputs contain significant amounts of Ca and SO4. The Ca from these anthropogenic inputs is promoting calcite growth, with concomitant consumption of carbonate alkalinity, undersaturation of the system with respect to dolomite, and dolomite dissolution; in brief, is driving “dedolomitization reactions”. Geochemical arguments supporting the occurrence of “dedolomitization reactions” in the area are provided by the results of mass balance and thermodynamic analyses. The mass balances predicted the weather sequence dolomite > calcite > plagioclase > K-feldspar, at odds with widely accepted sequences of weatherability where calcite is the first mineral in the weathering sequence. The exchange between calcite and dolomite can be a side effect of “dedolomitization reactions” because they cause precipitation of calcite. The thermodynamic prerequisites for “dedolomitization reactions” are satisfied by most local groundwaters (70%) since they are supersaturated (or in equilibrium) with respect to calcite, undersaturated (or in equilibrium) with respect to dolomite, and undersaturated with respect to gypsum. The Ca vs. SO4 and Mg vs. SO4 trends are also compatible with homologous trends resulting from “dedolomitization reactions”.
Journal title :
Applied Geochemistry
Serial Year :
2000
Journal title :
Applied Geochemistry
Record number :
740537
Link To Document :
بازگشت