Title of article :
Particulate air pollution in a small settlement: The effect of local heating
Author/Authors :
Martin Brani?، نويسنده , , Markéta Domasov?، نويسنده , , Pavla ?ez??ov?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
10
From page :
1255
To page :
1264
Abstract :
Mass concentrations of PM10, PM2.5, and black smoke (BS) were measured in April 2003 during a 3-week campaign in a small village and at a nearby background location in the central part of the Czech Republic. In a pilot analysis, concentrations of selected trace elements (Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Pb) in the collected aerosol were determined by means of ICP-MS. Average concentrations of both PM fractions and BS were higher in the village (37, 26 and 26 μg m−3) than at the background location (26, 19 and 11 μg m−3) for PM10, PM2.5 and BS, respectively. Both PM10 and PM2.5 were reasonably correlated in the village (r = 0.80) and also at the background location (r = 0.79). Correlation between same fractions from the village and from the background site were even higher (r = 0.97 and r = 0.95 for the PM10 and PM2.5, respectively) suggesting that most of the aerosol in both locations may be influenced by similar sources. The ratio between PM10 and PM2.5 showed that sources in the village contributed about 33% and 35% to local aerosol concentration for PM10 and PM2.5, respectively. When the data from the two rural locations were compared with corresponding 24-h averages of PM10 concentrations obtained for the period of the campaign from fixed site monitors situated near larger towns, the highest concentration was found in Prague the Czech capital (49 μg m−3) followed by a district town Beroun (41 μg m−3) and the village (37 μg m−3). The lowest PM10 concentration was found in the village background (26 μg m−3). Elemental analysis revealed higher concentrations for most of the elements characteristic of combustion aerosol (namely Zn, Pb, As, Mn and Ti) in the PM collected in the village. The results support the idea that traditional heating in villages may contribute a great extent to local air pollution and may represent an important problem.
Journal title :
Applied Geochemistry
Serial Year :
2000
Journal title :
Applied Geochemistry
Record number :
740733
Link To Document :
بازگشت