Title of article
Numerical estimation of the effects of condensation and coagulation on visibility using the moment method
Author/Authors
Chang H. Jung، نويسنده , , Yong P. Kim، نويسنده ,
Issue Information
ماهنامه با شماره پیاپی سال 2006
Pages
19
From page
143
To page
161
Abstract
An algorithm in which both aerosol dynamics and overall particle extinction coefficient are calculated is developed. The change of overall extinction coefficient and resultant visibility due to coagulation and condensation processes in the atmospheric aerosol is simulated for the aerosol size range of 0.005– in diameter. The moment method is used under the assumption that aerosol retains log-normal size distributions with varying geometric mean diameters and geometric standard deviations. The single particle extinction efficiency is approximated with a six order polynomial for the nuclei and accumulation mode particles, respectively. Three refractive indices which represent typical ambient aerosol conditions, i.e., hazy, urban, and clean area (Garcia Níeto, 2002, Aerosol Science and Technology, 36, 814–827) are considered. Subsequently, overall particle extinction coefficient and visibility from Koschmieder (1925, Atmosphere, 12, 171–181) for polydisperse aerosol are obtained. The simulation results show that coagulation enhances the visibility and condensation can enhance or reduce the visibility depending on the particle size and refractive index of accumulation mode particles for the simulated particles. The degree of the change is the highest for the hazy condition.
Keywords
coagulation , Moment method , aerosol , Extinction coefficient , Visibility , condensation
Journal title
Journal of Aerosol Science
Serial Year
2006
Journal title
Journal of Aerosol Science
Record number
743071
Link To Document