Title of article :
Existence and Bifurcation of Solutions for an Elliptic Degenerate Problem
Author/Authors :
Henri Berestycki، نويسنده , , Maria J. Esteban، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Abstract :
We investigate the existence, multiplicity and bifurcation of solutions of a model nonlinear degenerate elliptic differential equation: −x2u″=λu+up−1 uin (0, 1);u(0)=u(1)=0. This model is related to a simplified version of the nonlinear Wheeler–DeWitt equation as it appears in quantum cosmological models. We prove the existence of multiple positive solutions. More precisely, we show that there exists an infinite number of connected branches of solutions which bifurcate from the bottom of the essential spectrum of the corresponding linear operator.
Nous étudions ici lʹexistence, multiplicité et propriétés de bifurcation des solutions dʹun problème elliptique dégénéré: −x2u″=λu+up−1 uin (0, 1);u(0)=u(1)=0. Ce problème modèle est proche dʹune version simplifiée et non-linéaire de lʹéquation de Wheeler–DeWitt, utilisée dans des modèles de Cosmologie quantique. Nous prouvons lʹexistence dʹune infinité de branches de solutions qui bifurquent à partir de lʹinfimum du spectre continu de lʹopérateur linéaire correspondant.
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS