Title of article :
On Growth Rates of Subadditive Functions for Semiflows
Author/Authors :
Sebastian J. Schreiber، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
17
From page :
334
To page :
350
Abstract :
Letφ: X×T+→Xbe a semiflow on a compact metric spaceX. A functionF: X×T+→Xis subadditive with respect toφifF(x, t+s) F(x, t)+F(φ(x, t),nbsp;s). We define the maximal growth rate ofFto be supx X lim supt→∞(1/t) F(x, t). This growth rate is shown to equal the maximal growth rate of the subadditive function restricted to the minimal center of attraction of the semiflow. Applications to Birkhoff sums, characteristic exponents of linear skew-product semiflows on Banach bundles, and average Lyapunov functions are developed. In particular, a relationship between the dynamical spectrum and the measurable spectrum of a linear skew-product flow established by R. A. Johnson, K. J. Palmer, and G. R. Sell (SIAM J. Math. Anal.18, 1987, 1–33) is extended to semiflows in an infinite dimensional setting.
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
1998
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
749650
Link To Document :
بازگشت