Title of article :
The Fredholm Alternative at the First Eigenvalue for the One Dimensionalp-Laplacian
Author/Authors :
Manuel Del Pino، نويسنده , , PAVEL DRABEK، نويسنده , , Raul Man?sevich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Pages :
34
From page :
386
To page :
419
Abstract :
In this work we study the range of the operatoru (u′p−2 u′)′+λ1 up−2 u,u(0)=u(T)=0,p>1. We prove that all functionsh C1[0, T] satisfying ∫T0 h(t) sinp(πpt/T) dt=0 lie in the range, but that ifp≠2 andh 0 the solution set is bounded. Here sin(πpt/T) is a first eigenfunction associated toλ1. We also show that in this case the associated energy functionalu (1/p) ∫T0 u′p−(λ1/p) ∫T0 up+∫T0 huis unbounded from below if 12, onW1, p0(0, T) (λ1corresponds precisely to the best constant in theLp-Poincaré inequality). Moreover, we show that unlike the linear casep=2, forp≠2 the range contains a nonempty open set inL∞(0, T).
Keywords :
Leray Schauder degree , upper and lower solutions , refined asymptotics. , one-dimensional p-Laplacian , Resonance , Fredholm alternative
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
1999
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
749697
Link To Document :
بازگشت