Title of article :
Existence of a Global Attractor for Semilinear Dissipative Wave Equations on N
Author/Authors :
Nikos I. Karachalios، نويسنده , , Nikos M. Stavrakakis، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1999
Abstract :
We consider the semilinear hyperbolic problem utt+δut−φ(x) Δu+λf(u)=η(x), x N, t>0, with the initial conditions u(x, 0)=u0(x) and ut(x, 0)=u1(x) in the case where N 3 and (φ(x))−1 :=g(x) lies in LN/2( N). The energy space 0= 1, 2( N)×L2g( N) is introduced, to overcome the difficulties related with the noncompactness of operators which arise in unbounded domains. We derive various estimates to show local existence of solutions and existence of a global attractor in 0. The compactness of the embedding 1, 2( N) L2g( N) is widely applied.
Keywords :
dynamical systems , Attractors , Semigroups , Hyperbolic equations , unbounded domains , generalised Sobolev spaces. , nonlinearproblems
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS