Title of article :
Well-Posedness of the Cauchy Problem for a Shallow Water Equation on the Circle
Author/Authors :
A. Alexandrou Himonas، نويسنده , , Gerard Misio ek، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
17
From page :
479
To page :
495
Abstract :
In this paper we consider the periodic Cauchy problem for a fifth order modification of the Camassa–Holm equation. We prove local well-posedness in appropriate Bourgain spaces for initial data in a Sobolev space Hs(T), s>1/2. We also prove global well-posedness for data in H1(T) and of arbitrary size. The proofs are based on a priori estimates using Fourier analysis techniques, microlocalization in phase space, an interpolation argument and a fixed point theorem.
Keywords :
Cauchy problem , well-posedness , Sobolev spaces , Fourier transform.
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2000
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
749870
Link To Document :
بازگشت