Title of article :
Uniform Concentration-Compactness for Sobolev Spaces on Variable Domains
Author/Authors :
Dorin Bucur، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
24
From page :
427
To page :
450
Abstract :
We present a new method for proving existence results in shape optimization problems involving the eigenvalues of the Dirichlet–Laplace operator. This method brings together the γ-convergence theory and the concentration-compactness principle. Given a sequence of open sets (An)n in N, not necessarily bounded, but of uniformly bounded measure, we prove a concentration-compactness result in (L2( N)) for the sequence of resolvent operators (RAn)n , where RAn: L2( N)→H10(An), RAn=(−Δ)−1.
Keywords :
gamma convergence , Shape optimization , concentration-compactness principle , resolventoperators , Sobolev spaces.
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2000
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
749885
Link To Document :
بازگشت