Title of article :
A Spectral Theory for a λ-Rational Sturm–Liouville Problem
Author/Authors :
Vadim Adamjan، نويسنده , , Heinz Langer، نويسنده , , Matthias Langer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
We consider the regular Sturm–Liouville problem y″−py+(λ+q/(u−λ)) y=0, which contains the eigenvalue parameter rationally. Under certain assumptions on p, q, and u it is shown that the spectrum of the problem consists of a continuous component (the range of the function u), discrete eigenvalues, and possibly a finite number of embedded eigenvalues. In the considered situation the continuous spectrum is absolutely continuous, and explicit formulas for the spectral density and the corresponding Fourier transform are given.
Keywords :
nonlinear eigenvalue problem , block operator matrix. , spectral density
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS