Abstract :
The capacity of coupled nonlinear Schrödinger (NLS) equations to support multipulse solutions (multibump solitary-waves) is investigated. A detailed analysis is undertaken for a system of quadratically coupled equations that describe the phenomena of second harmonic generation and parametric wave interaction in non-centrosymmetric optical materials. Utilising the framework of homoclinic bifurcation theory, and employing a Lyapunov–Schmidt reduction method developed by Hale, Lin, and Sandstede, a novel mechanism for the generation of multipulses is identified, which arises from a resonant semi-simple eigenvalue configuration of the linearised steady-state equations. Conditions for the existence of multipulses, as well as a description of their geometry, are derived from the analysis