Title of article :
Two-Phase Stefan Problem as the Limit Case of Two-Phase Stefan Problem with Kinetic Condition
Author/Authors :
Fahuai Yi، نويسنده , , Yuqing Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2002
Pages :
19
From page :
189
To page :
207
Abstract :
Both one-dimensional two-phase Stefan problem with the thermodynamic equilibrium condition u(R(t),t)=0 and with the kinetic rule u (R (t),t)= R ′(t) at the moving boundary are considered. We prove, when approaches zero, R (t) converges to R(t) in C1+δ/2[0,T] for any finite T>0, 0<δ<1.
Keywords :
kinetic undercooling , Stefan problem , convergence.
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2002
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750263
Link To Document :
بازگشت