• Title of article

    Existence and nonexistence of least energy solutions of the Neumann problem for a semilinear elliptic equation with critical Sobolev exponent and a critical lower-order perturbation

  • Author/Authors

    David G. Costa، نويسنده , , Pedro M. Gir?o، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    39
  • From page
    164
  • To page
    202
  • Abstract
    Let Ω be a smooth bounded domain in , with N 5, a>0, α 0 and . We show that the exponent plays a critical role regarding the existence of least energy (or ground state) solutions of the Neumann problem Namely, we prove that when there exists an α0>0 such that the problem has a least energy solution if α<α0 and has no least energy solution if α>α0.
  • Keywords
    critical sobolev exponent , neumann problem , Least energy solutions , inequalities
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Serial Year
    2003
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Record number

    750378