• Title of article

    Uniqueness for some Leray–Hopf solutions to the Navier–Stokes equations

  • Author/Authors

    Sandrine Dubois، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    49
  • From page
    99
  • To page
    147
  • Abstract
    We exhibit simple sufficient conditions which give weak–strong uniqueness for the 3D Navier–Stokes equations. The main tools are trilinear estimates and energy inequalities. We then apply our result to the framework of Lorentz, Morrey and Besov over Morrey spaces so as to get new weak–strong uniqueness classes and so uniqueness classes for solutions in the Leray–Hopf class. In the last section, we give a uniqueness and regularity result. We obtain new uniqueness classes for solutions in the Leray–Hopf class without energy inequalities but sufficiently regular.
  • Keywords
    Morrey spaces , Navier–Stokes equations , weak solutions , Weak–strong uniqueness , Uniqueness , Mild solutions , Energy inequalities , Besov spaces , Lorentz spaces
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Serial Year
    2003
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Record number

    750399