• Title of article

    A quadratic Bolza-type problem in a Riemannian manifold

  • Author/Authors

    A. M. Candela and A. Salvatore، نويسنده , , J. L. Flores، نويسنده , , M. S?nchez، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2003
  • Pages
    16
  • From page
    196
  • To page
    211
  • Abstract
    A classical nonlinear equation on a complete Riemannian manifold is considered. The existence of solutions connecting any two points is studied, i.e., for T>0 the critical points of the functional with x(0)=x0,x(T)=x1. When the potential V has a subquadratic growth with respect to x, JT admits a minimum critical point for any T>0 (infinitely many critical points if the topology of is not trivial). When V has an at most quadratic growth, i.e., , this property does not hold, but an optimal arrival time T(λ)>0 exists such that, if 0
  • Keywords
    Ljusternik–Schnirelman theory , Variational principle , Riemannian manifolds
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Serial Year
    2003
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Record number

    750499