• Title of article

    Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem

  • Author/Authors

    Massimo Cicognani، نويسنده , , Ferruccio Colombini، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    15
  • From page
    143
  • To page
    157
  • Abstract
    We deal with the Cauchy problem for a strictly hyperbolic second-order operator with non-regular coefficients in the time variable. It is well-known that the problem is well-posed in L2 in case of Lipschitz continuous coefficients and that the log-Lipschitz continuity is the natural threshold for the well-posedness in Sobolev spaces which, in this case, holds with a loss of derivatives. Here, we prove that any intermediate modulus of continuity between the Lipschitz and the log-Lipschitz one leads to an energy estimate with arbitrary small loss of derivatives. We also provide counterexamples to show that the following classification: is sharp
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Serial Year
    2006
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Record number

    750780