Title of article
A unified proof on the weak Hilbert 16th problem for n=2
Author/Authors
Fengde Chen، نويسنده , , Chengzhi Li and Guanshui Xu، نويسنده , , Jaume Llibre، نويسنده , , Zenghua Zhang، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
34
From page
309
To page
342
Abstract
The weak Hilbert 16th problem for n=2 was solved by Horozov and Iliev (Proc. London Math. Soc. 69 (1994) 198–244), Zhang and Li (Adv. in Math. 26 (1997) 445–460), (Gavrilov Invent. Math. 143 (2001) 449–497), and Li and Zhang (Nonlinearity 15 (2002) 1775–1992), by using different methods for different cases. The aim of this paper is to give a unified and easier proof for all cases. The proof is restricted to the real domain, combines geometric and analytical methods, and uses deformation arguments.
Keywords
Weak Hilbert 16th problem , Abelian integral , Centroid curve , Deformation argument
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year
2006
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number
750788
Link To Document