Title of article :
A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam
Author/Authors :
B. Breuer، نويسنده , , Michael J. Horak، نويسنده , , LD Humphreys and PJ McKenna ، نويسنده , , L. M. PLUM، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
38
From page :
60
To page :
97
Abstract :
For a nonlinear beam equation with exponential nonlinearity, we prove existence of at least 36 travelling wave solutions for the specific wave speed c=1.3. This complements the result in [Smets, van den Berg, Homoclinic solutions for Swift–Hohenberg and suspension bridge type equations, J. Differential Equations 184 (2002) 78–96.] stating that for almost all there exists at least one solution. Our proof makes heavy use of computer assistance: starting from numerical approximations, we use a fixed point argument to prove existence of solutions “close to” the computed approximations.
Keywords :
Travelling waves , Existence , Computer-assisted proof , multiplicity
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2006
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750830
Link To Document :
بازگشت