Title of article
Attractors and dimension of dissipative lattice systems
Author/Authors
Shengfan Zhou، نويسنده , , Wei Shi، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2006
Pages
33
From page
172
To page
204
Abstract
In this paper, by using the argument in [Q.F. Ma, S.H. Wang, C.K. Zhong, Necessary and sufficient conditions for the existence of global attractor for semigroup and application, Indiana Univ. Math. J., 51(6) (2002), 1541–1559.], we prove that the condition given in [S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations 200 (2004) 342–368.] for the existence of a global attractor for the semigroup associated with general lattice systems on a discrete Hilbert space is a sufficient and necessary condition. As an application, we consider the existence of a global attractor for a second-order lattice system in a discrete weighted space containing all bounded sequences. Finally, we show that the global attractor for first-order and partly dissipative lattice systems corresponding to (partly dissipative) reaction–diffusion equations and second-order dissipative lattice systems corresponding to the strongly damped wave equations have finite fractal dimension if the derivative of the nonlinear term is small at the origin.
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year
2006
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number
750833
Link To Document