• Title of article

    The wave equation with Wentzell–Robin boundary conditions on Lp-spaces

  • Author/Authors

    Valentin Keyantuo، نويسنده , , Mahamadi Warma، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2006
  • Pages
    18
  • From page
    680
  • To page
    697
  • Abstract
    Let a W1,∞(0,1), a(x) δ>0, b,c L∞(0,1) and consider the differential operator A formally given by Au=au″+bu′+cu. We prove in the first part that a realization of A with Wentzell–Robin boundary conditions on generates a cosine function for p [1,∞). In particular, we obtain that this realization of A generates a holomorphic C0-semigroup of angle π/2 on the space . This solves an open problem by A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli and W. Arendt. Of crucial importance is the formulation of the boundary conditions. We show in the second part that if Ω:=(0,1)N, N 1, is the cube in , then the Laplacian with pure Wentzell boundary conditions generates an α-times integrated cosine function on for any .
  • Keywords
    Wentzell–Robinboundary conditions , wave equation , Cosine function , Integrated semigroups , Holomorphic semigroups
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Serial Year
    2006
  • Journal title
    JOURNAL OF DIFFERENTIAL EQUATIONS
  • Record number

    750979