Title of article :
The wave equation with Wentzell–Robin boundary conditions on Lp-spaces
Author/Authors :
Valentin Keyantuo، نويسنده , , Mahamadi Warma، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
18
From page :
680
To page :
697
Abstract :
Let a W1,∞(0,1), a(x) δ>0, b,c L∞(0,1) and consider the differential operator A formally given by Au=au″+bu′+cu. We prove in the first part that a realization of A with Wentzell–Robin boundary conditions on generates a cosine function for p [1,∞). In particular, we obtain that this realization of A generates a holomorphic C0-semigroup of angle π/2 on the space . This solves an open problem by A. Favini, G.R. Goldstein, J.A. Goldstein, S. Romanelli and W. Arendt. Of crucial importance is the formulation of the boundary conditions. We show in the second part that if Ω:=(0,1)N, N 1, is the cube in , then the Laplacian with pure Wentzell boundary conditions generates an α-times integrated cosine function on for any .
Keywords :
Wentzell–Robinboundary conditions , wave equation , Cosine function , Integrated semigroups , Holomorphic semigroups
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2006
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
750979
Link To Document :
بازگشت