Title of article :
Global solutions for nonlinear Klein–Gordon equations in infinite homogeneous waveguides
Author/Authors :
Daoyuan Fang، نويسنده , , Sijia Zhong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
23
From page :
212
To page :
234
Abstract :
In this paper we prove a global existence result for nonlinear Klein–Gordon equations in infinite homogeneous waveguides, , with smooth small data, where M=(M,g) is a Zoll manifold, or a compact revolution hypersurface. The method is based on normal forms, eigenfunction expansion and the special distribution of eigenvalues of the Laplace–Beltrami on such manifolds.
Keywords :
global existence , Klein–Gordon , Waveguides
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2006
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751026
Link To Document :
بازگشت