Title of article :
Symmetry theorems for the overdetermined eigenvalue problems
Author/Authors :
Genqian Liu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
The well-known Schiffer conjecture saying that for a smooth bounded domain , if there exists a positive Neumann eigenvalue such that the corresponding Neumann eigenfunction u is constant on the boundary of Ω, then Ω is a ball. In this paper, we shall prove that the Schiffer conjecture holds if and only if the third order interior normal derivative of the corresponding Neumann eigenfunction is constant on the boundary. We also prove a similar result to the Berenstein conjecture for the overdetermined Dirichlet eigenvalue problem.
Keywords :
Berenstein’s conjecture , Schiffer’s conjecture , Dirichlet eigenvalue , Neumann eigenvalue , Pompeiu problem
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS