Title of article :
A density result for Sobolev spaces in dimension two, and applications to stability of nonlinear Neumann problems
Author/Authors :
Alessandro Giacomini، نويسنده , , Paola Trebeschi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
34
From page :
27
To page :
60
Abstract :
We prove that if is bounded and satisfies suitable structural assumptions (for example it has a countable number of connected components), then W1,2(Ω) is dense in W1,p(Ω) for every 1 p<2. The main application of this density result is the study of stability under boundary variations for nonlinear Neumann problems of the form where and are Carathéodory functions which satisfy standard monotonicity and growth conditions of order p.
Keywords :
sobolev spaces , capacity , Hausdorff metric , nonlinear elliptic equations , Moscoconvergence , Hausdorff measure
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2007
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751174
Link To Document :
بازگشت