Title of article :
The Stokes phenomenon in the confluence of the hypergeometric equation using Riccati equation
Author/Authors :
Caroline Lambert، نويسنده , , Christiane Rousseau، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
24
From page :
2641
To page :
2664
Abstract :
In this paper we study the confluence of two regular singular points of the hypergeometric equation into an irregular one. We study the consequence of the divergence of solutions at the irregular singular point for the unfolded system. Our study covers a full neighborhood of the origin in the confluence parameter space. In particular, we show how the divergence of solutions at the irregular singular point explains the presence of logarithmic terms in the solutions at a regular singular point of the unfolded system. For this study, we consider values of the confluence parameter taken in two sectors covering the complex plane. In each sector, we study the monodromy of a first integral of a Riccati system related to the hypergeometric equation. Then, on each sector, we include the presence of logarithmic terms into a continuous phenomenon and view a Stokes multiplier related to a 1-summable solution as the limit of an obstruction that prevents a pair of eigenvectors of the monodromy operators, one at each singular point, to coincide.
Keywords :
Hypergeometric equation , confluence , Stokes phenomenon , Analytic continuation , Divergent series , Summability , Confluent hypergeometric equation , Monodromy , Riccati equation
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2008
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751397
Link To Document :
بازگشت