Title of article
Transversality in scalar reaction–diffusion equations on a circle
Author/Authors
Radoslaw Czaja، نويسنده , , Carlos Rocha، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
30
From page
692
To page
721
Abstract
We prove that stable and unstable manifolds of hyperbolic periodic orbits for general scalar reaction–diffusion equations on a circle always intersect transversally. The argument also shows that for a periodic orbit there are no homoclinic connections. The main tool used in the proofs is Matanoʹs zero number theory dealing with the Sturm nodal properties of the solutions
Keywords
Heteroclinic orbit , Transversality , global attractor , Zero number , Periodic orbit
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year
2008
Journal title
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number
751444
Link To Document