Title of article :
Global well-posedness of the critical Burgers equation in critical Besov spaces
Author/Authors :
Changxing Miao، نويسنده , , Gang Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
21
From page :
1673
To page :
1693
Abstract :
We make use of the method of modulus of continuity [A. Kiselev, F. Nazarov, R. Shterenberg, Blow up and regularity for fractal Burgers equation, Dyn. Partial Differ. Equ. 5 (2008) 211–240] and Fourier localization technique [H. Abidi, T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal. 40 (1) (2008) 167–185] [H. Abidi, T. Hmidi, On the global well-posedness of the critical quasi-geostrophic equation, SIAM J. Math. Anal. 40 (1) (2008) 167–185] to prove the global well-posedness of the critical Burgers equation ∂tu+u∂xu+Λu=0 in critical Besov spaces with p [1,∞), where .
Keywords :
Burgers equationModulus of continuityFourier localizationGlobal well-posednessBesov spaces
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2009
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751574
Link To Document :
بازگشت