Title of article :
Estimates for eigenvalues on Riemannian manifolds
Author/Authors :
Qing-Ming Cheng and Young Jin Suh، نويسنده , , Hongcang Yang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
12
From page :
2270
To page :
2281
Abstract :
In this paper, we investigate eigenvalues of the Dirichlet eigenvalue problem of Laplacian on a bounded domain Ω in an n-dimensional complete Riemannian manifold M. When M is an n-dimensional Euclidean space Rn, the conjecture of Pólya is well known: the kth eigenvalue λk of the Dirichlet eigenvalue problem of Laplacian satisfies Li and Yau [P. Li, S.T. Yau, On the Schrödinger equation and the eigenvalue problem, Comm. Math. Phys. 88 (1983) 309–318] (cf. Lieb [E. Lieb, The number of bound states of one-body Schrödinger operators and the Weyl problem, in: Proc. Sympos. Pure Math., vol. 36, 1980, pp. 241–252]) have given a partial solution for the conjecture of Pólya, that is, they have proved which is sharp in the sense of average. In this paper, we consider a general setting for complete Riemannian manifolds. We establish an analog of the Li and Yauʹs inequality for eigenvalues of the Dirichlet eigenvalue problem of Laplacian on a bounded domain in a complete Riemannian manifold. Furthermore, we obtain a universal inequality for eigenvalues of the Dirichlet eigenvalue problem of Laplacian on a bounded domain in a hyperbolic space Hn(−1). From it, we prove that when the bounded domain Ω tends to Hn(−1), all eigenvalues tend to .
Keywords :
Lower bound for eigenvalues of LaplacianRiemannian manifoldsUniversal inequality for eigenvaluesHyperbolic space
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2009
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751598
Link To Document :
بازگشت