Title of article :
Convergence of Galerkin solutions and continuous dependence on data in spectrally-hyperviscous models of 3D turbulent flow
Author/Authors :
Joel Avrin، نويسنده , , Qi-Chang Xiao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We obtain results on the convergence of Galerkin solutions and continuous dependence on data for the spectrally-hyperviscous Navier–Stokes equations. Let uN denote the Galerkin approximates to the solution u, and let wN=u−uN. Then our main result uses the decomposition wN=PnwN+QnwN where (for fixed n) Pn is the projection onto the first n eigenspaces of A=−Δ and Qn=I−Pn. For assumptions on n that compare well with those in related previous results, the convergence of QnwN(t) Hβ as N→∞ depends linearly on key parameters (and on negative powers of λn), thus reflective of Kolmogorov-theory predictions that in high wavenumber modes viscous (i.e. linear) effects dominate. Meanwhile PnwN(t) Hβ satisfies a more standard exponential estimate, with positive, but fractional, dependence on λn. Modifications of these estimates demonstrate continuous dependence on data.
Keywords :
Spectrally-hyperviscous Navier–StokesequationsGalerkin approximationsSpectral decomposition methodsStrong convergence
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS