Title of article :
Minimizing Neumann fundamental tones of triangles: An optimal Poincaré inequality
Author/Authors :
R.S. Laugesen، نويسنده , , B.A. Siudeja، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
The first nonzero eigenvalue of the Neumann Laplacian is shown to be minimal for the degenerate acute isosceles triangle, among all triangles of given diameter. Hence an optimal Poincaré inequality for triangles is derived.
The proof relies on symmetry of the Neumann fundamental mode for isosceles triangles with aperture less than π/3. Antisymmetry is proved for apertures greater than π/3.
Keywords :
IsodiametricIsoperimetricFree membranePoincaré inequality
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS