Title of article :
Nonlinear alternatives of Schauder and Krasnoselʹskij types with applications to Hammerstein integral equations in L1 spaces
Author/Authors :
Smail Djebali، نويسنده , , Zahira Sahnoun، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
15
From page :
2061
To page :
2075
Abstract :
This paper is devoted to establishing new variants of some nonlinear alternatives of Leray–Schauder and Krasnoselʹskij type involving the weak topology of Banach spaces. The De Blasi measure of weak noncompactness is used. An application to solving a nonlinear Hammerstein integral equation in L1 spaces is given. Our results complement recent ones in [K. Latrach, M.A. Taoudi, A. Zeghal, Some fixed point theorems of the Schauder and the Krasnoselʹskij type and application to nonlinear transport equations, J. Differential Equations 221 (2006) 256–2710] and [K. Latrach, M.A. Taoudi, Existence results for a generalized nonlinear Hammerstein equation on L1 spaces, Nonlinear Anal. 66 (2007) 2325–2333].
Keywords :
Weak topologyMeasure of weak noncompactnessFixed point theoremNonlinear alternativeHammerstein equation
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Serial Year :
2010
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Record number :
751846
Link To Document :
بازگشت