Title of article :
On the Hughesʹ model for pedestrian flow: The one-dimensional case
Author/Authors :
Marco Di Francesco، نويسنده , , Peter A. Markowich، نويسنده , , Jan-Frederik Pietschmann، نويسنده , , Marie-Therese Wolfram، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper we investigate the mathematical theory of Hughesʹ model for the flow of pedestrians (cf. Hughes (2002) [17]), consisting of a non-linear conservation law for the density of pedestrians coupled with an eikonal equation for a potential modelling the common sense of the task. For such an approximated system we prove existence and uniqueness of entropy solutions (in one space dimension) in the sense of Kružkov (1970) [22], in which the boundary conditions are posed following the approach of Bardos et al. (1979) [7]. We use BV estimates on the density ρ and stability estimates on the potential in order to prove uniqueness. Furthermore, we analyze the evolution of characteristics for the original Hughesʹ model in one space dimension and study the behavior of simple solutions, in order to reproduce interesting phenomena related to the formation of shocks and rarefaction waves. The characteristic calculus is supported by numerical simulations
Keywords :
Pedestrian flowScalar conservation lawsEikonal equationElliptic couplingEntropy solutionsCharacteristics
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS
Journal title :
JOURNAL OF DIFFERENTIAL EQUATIONS