Title of article :
Night-time formation and occurrence of new particles associated with orographic clouds
Author/Authors :
A. WIEDENSOHLER، نويسنده , , H. -C. Hansson، نويسنده , , D. Orsini، نويسنده , , M. WENDISCH، نويسنده , , F. Wagner، نويسنده , , K. N. Bower، نويسنده , , T. W. Chourlarton، نويسنده , , M. Wells، نويسنده , , M. Parkin، نويسنده , , K. Acker، نويسنده , , W. Wieprecht، نويسنده , , M. C. Facchini، نويسنده , , J. A. Lind، نويسنده , , S. Fuzzi، نويسنده , , B. G. Arends، نويسنده , , M. Kulmalao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1997
Pages :
15
From page :
2545
To page :
2559
Abstract :
The formation and occurrence of new ultrafine aerosol particles were studied in association with an orographic cloud during a field experiment at Great Dun Fell (GDF), Northern England. Three size spectrometers to measure submicrometer aerosol particles were located upwind, on top, and downwind of GDF Summit to investigate changes in the aerosol size distribution. During two night-time cloud periods, ultrafine particles were observed downwind of the hill while no particles were detected upwind of the hill. During one cloud event, there was some evidence of entrainment. In this case, the occurrence of ultrafine particles may have been due to entrainment from aloft or by homogenous nucleation downwind of the hill. During the other cloud event, the formation of an ultrafine particle mode (nucleation mode) occurred probably after the cloud passage. There was no evidence of entrainment during this time period. Multicomponent homogeneous nucleation models were used to simulate the formation of new particle downwind of an orographic cloud. Possible homogeneous nucleation processes for this could be the formation of sulphuric acid or ammonium chloride due to outgassing of hydrochloric acid. It was not possible, however, to simulate formation rates of new particles as observed downwind the hill using a model for the binary or ternary homogeneous nucleation process of ammonia and hydrochloric acid. During the first event with high sulphur dioxide concentrations, the formation of new particle via binary homogeneous nucleation of sulphuric acid and water could be only predicted using a high nighttime hydroxyl radical concentration. No formation of sulphuric acid particle could be simulated during the second event with low sulphur dioxide concentrations.
Keywords :
Nighttime nucleation , Ultrafine aerosol , cloud-induced particle formation
Journal title :
Atmospheric Environment
Serial Year :
1997
Journal title :
Atmospheric Environment
Record number :
754828
Link To Document :
بازگشت