Author/Authors :
R. Holzinger، نويسنده , , B. Kleiss، نويسنده , , L. Donoso، نويسنده , , By E. SANHUEZA، نويسنده ,
Abstract :
Using the novel on-line proton transfer reaction mass spectrometry (PTR-MS) technique, atmospheric concentrations of benzene, toluene, xylenes, and C9-benzenes were measured in Caracas (urban), Altos de Pipe (sub-urban), Calabozo (rural) and Parupa (remote), during various campaigns in 1999 and 2000.
Average daytime mixing ratios measured in Caracas are 1.1, 3.2, 3.7, and 2.7 nmol/mol for benzene, toluene, xylenes, and C9-benzenes. At the sub-urban site, located only few km from Caracas, relatively low levels ( 20% of the levels measured in Caracas) of these aromatic hydrocarbons were observed.
At the rural site during the dry season, higher concentrations of benzene (0.15 nmol/mol) were recorded, whereas those of toluene (0.08 nmol/mol) were lower during that time. The aromatic hydrocarbon ratios in the wet season (benzene: 0.08 nmol/mol; toluene: 0.09 nmol/mol) are consistent with an aged urban plume, whereas biomass burning emissions dominate during the dry season. From rural and urban [benzene]/[toluene] ratios a mean HO concentration of 2.6×106 molecules/cm3 was estimated during the wet season. This value must be considered an overestimate because it does not account for background concentrations which are likely for benzene and toluene.
At the remote “La Gran Sabana” region (Parupa) very low mixing ratios (0.031 and 0.015 nmol/mol for benzene and toluene) are showing the pristine region to be unaffected by local sources. From the [benzene]/[toluene] ratio we deduced, that “urban” air arriving from the coastline (350 km) is likely mixed with air containing some background of benzene and toluene.
Urban emissions (automobiles) should be the major source of aromatic compounds, however, during the dry season biomass burning seems to make an important contribution.
Keywords :
Toluene , Benzene , Proton transfer reaction mass spectrometry , Biomass burning , Traffic emissions , HO radical