Title of article :
Long-range transport and re-circulation of pollutants in the western Mediterranean during the project Regional Cycles of Air Pollution in the West-Central Mediterranean Area
Author/Authors :
Gotzon Gangoiti، نويسنده , , Millan M. Millan، نويسنده , , Rosa Salvador، نويسنده , , Enrique Mantilla، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Abstract :
During the warm season (March–September), high ozone concentrations have been reported at the coastal and mountain monitoring stations of the eastern Iberia coast (Millán et al., J. Geophys. Res. 102 (D7) 8811, J. Appl. Meteorol. 4 (2000) 487). The vegetation protection threshold of current Directive 92/72/EEC and the World Health Organisation guideline for the protection of crops and semi-natural vegetation are systematically exceeded during the whole period. The main objective of the present study is to search for the origin of these chronic pollution levels: to search for the reason(s) for such high O3 concentrations during such a long period. A mesoscale model is used to reproduce the diurnal cycle of winds and stability/layering over the Western Mediterranean Basin (WMB), at a sufficient space/temporal resolution, under a typical recursive synoptic condition during the warm season: data from the flight tracks of the European Project—Regional Cycles of Air Pollution in the West-Central Mediterranean Area—are used to substantiate the model results. Times of residence and the final distribution of pollutants entering the WMB are estimated using single-particle Lagrangian trajectories and a multiple-particle dispersion model. Our results show that the marine boundary layer and the lower troposphere in the region between the Balearic Islands and eastern Iberia are subject to a flow regime that tends to accumulate pollutants within large circulations, covering the entire western basin. We have also shown a diurnal pulsation of the Tramontana/Mistral wind regime, which can transport new pollutants into the area (background concentrations of 50–65 ppb of O3 of continental European origin) that are added to local emissions and re-circulated within the coastal breezes at eastern Iberia for periods of more than five days. Local emissions and wind configuration contribute to increase the O3 concentrations up to 100 ppb and even more.
Keywords :
aircraft measurements , ozone , dispersion , Modelling , Mesoscale
Journal title :
Atmospheric Environment
Journal title :
Atmospheric Environment