Title of article :
Riemann–Hilbert theory for problems with vanishing coefficients that arise in nonlinear hydrodynamics
Author/Authors :
E. Shargorodsky، نويسنده , , J.F. Toland، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
18
From page :
283
To page :
300
Abstract :
Motivated by a question from mathematical hydrodynamics, this paper studies the solution set of Riemann–Hilbert problems on the unit disc D in C of the formψ=aϕ̄ on ∂D,where ϕ,ψ belong to subclasses of N+, the Nevanlinna–Smirnov functions on D, and the coefficient a is a real-valued non-negative function which vanishes at points of ∂D.
Keywords :
Riemann–Hilbert problem , Hardy spaces , nonlinear waves
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761526
Link To Document :
بازگشت