Title of article :
Hilbert polynomials and Arvesonʹs curvature invariant
Author/Authors :
Xiang Fang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
20
From page :
445
To page :
464
Abstract :
We define and study Hilbert polynomials for certain holomorphic Hilbert spaces. We obtain several estimates for these polynomials and their coefficients. Our estimates inspire us to investigate the connection between the leading coefficients of Hilbert polynomials for invariant subspaces of the symmetric Fock space and Arvesonʹs curvature invariant for coinvariant subspaces. We are able to obtain some formulas relating the curvature invariant with other invariants. In particular, we prove that Arvesonʹs version of the Gauss–Bonnet–Chern formula is true when the invariant subspaces are generated by any polynomials.
Keywords :
Hilbert polynomial , Arveson’s curvature , Hilbert module , Gauss–Bonnet–Chern
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761553
Link To Document :
بازگشت