Title of article :
Self-adjoint block operator matrices with non-separated diagonal entries and their Schur complements
Author/Authors :
H. Langer، نويسنده , , Thomas A. Markus، نويسنده , , V. Matsaev، نويسنده , , C. Tretter، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
25
From page :
427
To page :
451
Abstract :
In this paper self-adjoint 2×2 block operator matrices A in a Hilbert space H1⊕H2 are considered. For an interval Δ which does not intersect the spectrum of at least one of the diagonal entries of A, we prove angular operator representations for the corresponding spectral subspace LΔ(A) of A and we study the supporting subspace in this angular operator representation of LΔ(A), which is the orthogonal projection of LΔ(A) to the corresponding component H1 or H2. Our main result is a description of a special direct complement of this supporting subspace in its component in terms of spectral subspaces of the values of the corresponding Schur complement of A in the endpoints of Δ.
Keywords :
Schur complement , Angular operator , Block operator matrix
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761574
Link To Document :
بازگشت