Title of article :
Hardy spaces and divergence operators on strongly Lipschitz domains of Rn
Author/Authors :
Pascal Auscher ، نويسنده , , Emmanuel Russ، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Let Ω be a strongly Lipschitz domain of Rn. Consider an elliptic second-order divergence operator L (including a boundary condition on ∂Ω) and define a Hardy space by imposing the non-tangential maximal function of the extension of a function f via the Poisson semigroup for L to be in L1. Under suitable assumptions on L, we identify this maximal Hardy space with H1(Rn) if Ω=Rn, with Hr1(Ω) under the Dirichlet boundary condition, and with Hz1(Ω) under the Neumann boundary condition.
Keywords :
Strongly Lipschitz domain , Elliptic second-order operator , boundary condition , Hardy spaces , Maximal functions , Atomic decomposition
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis