Abstract :
In 1971 Palamodov proved that in the category of locally convex spaces the derived functors Extk(E,X) of Hom(E,•) all vanish if E is a (DF)-space, X is a Fréchet space, and one of them is nuclear. He conjectured a “dual result”, namely that Extk(E,X)=0 for all k∈N if E is a metrizable locally convex space, X is a complete (DF)-space, and one of them is nuclear. Assuming the continuum hypothesis we give a complete answer to this conjecture: If X is an infinite-dimensional nuclear (DF)-space, then