Title of article :
Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces
Author/Authors :
Pekka Koskela ، نويسنده , , Kai Rajala، نويسنده , , Nageswari Shanmugalingam، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
27
From page :
147
To page :
173
Abstract :
We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincaré inequality and in addition supporting a corresponding Sobolev–Poincaré-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity.
Keywords :
Heat kernel , Lipschitz regularity , Poincare´ inequality , logarithmic Sobolev inequality , hypercontractivity , doubling measure , Newtonian space , Cheeger-harmonic
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761629
Link To Document :
بازگشت