Title of article :
Extremal functions as divisors for kernels of Toeplitz operators
Author/Authors :
Andreas Hartmann، نويسنده , , Yurii Lyubarskii and Kristian Seip، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
21
From page :
342
To page :
362
Abstract :
In this paper, an extremal function of a Banach space of analytic functions in the unit disk (not all functions vanishing at 0) is a function solving the extremal problem sup Re f(0) for functions f of norm 1. We study extremal functions of kernels of Toeplitz operators on Hardy spaces Hp, 12 (modulo p-dependent multiplicative constants). We give examples showing that the extremal function may fail to be a contractive divisor when p>2 and also fail to be an expansive divisor when p<2. We discuss to what extent these results characterize the Toeplitz operators via invariant subspaces for the backward shift.
Keywords :
Toeplitz operators , Invariant subspaces with respect to the backward shift , Extremal functions , Nearly invariant subspaces , Carleson measures
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761637
Link To Document :
بازگشت