Title of article :
The Marchenko–Ostrovski mapping and the trace formula for the Camassa–Holm equation
Author/Authors :
Andrei Badanin، نويسنده , , Markus Klein، نويسنده , , Evgeni Korotyaev، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
25
From page :
494
To page :
518
Abstract :
We consider the periodic weighted operator Ty=−ρ−2(ρ2y′)′+14 ρ−4 in L2(R,ρ2 dx) where ρ is a 1-periodic positive function satisfying q=ρ′/ρ∈L2(0,1). The spectrum of T consists of intervals separated by gaps. In the first part of the paper we construct the Marchenko–Ostrovski mapping q→h(q) and solve the corresponding inverse problem. For our approach it is essential that the mapping h has the factorization h(q)=h0(V(q)), where q→V(q) is a certain nonlinear mapping and V→h0(V) is the Marchenko–Ostrovski mapping for the Hill operator. Moreover, we solve the inverse problem for the gap length mapping. In the second part of this paper we derive the trace formula for T.
Journal title :
Journal of Functional Analysis
Serial Year :
2003
Journal title :
Journal of Functional Analysis
Record number :
761664
Link To Document :
بازگشت