Title of article :
Maximal theorems of Menchoff–Rademacher type in non-commutative Lq-spaces
Author/Authors :
Andreas Defant، نويسنده , , Marius Junge، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
34
From page :
322
To page :
355
Abstract :
Estimates for maximal functions provide the fundamental tool for solving problems on pointwise convergence. This applies in particular for the Menchoff–Rademacher theorem on orthogonal series in L2[0,1] and for results due independently to Bennett and Maurey–Nahoum on unconditionally convergent series in L1[0,1]. We prove corresponding maximal inequalities in non-commutative Lq-spaces over a semifinite von Neumann algebra. The appropriate formulation for non-commutative maximal functions originates in Pisierʹs recent work on non-commutative vector valued Lq-spaces
Keywords :
Maximal function , Unconditional seqeunces , Non-commutative Lq-spaces
Journal title :
Journal of Functional Analysis
Serial Year :
2004
Journal title :
Journal of Functional Analysis
Record number :
761709
Link To Document :
بازگشت