Title of article :
Functional calculus under the Tadmor–Ritt condition, and free interpolation by polynomials of a given degree
Author/Authors :
Pascale Vitse، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
30
From page :
43
To page :
72
Abstract :
For Banach space operators T satisfying the Tadmor–Ritt condition ||(zI−T)−1||⩽C|z−1|−1, |z|>1, we prove that the best-possible constant CT(n) bounding the polynomial calculus for T, ||p(T)||⩽CT(n)||p||∞, deg(p)⩽n, behaves (in the worst case) as log n as n→∞. This result is based on a new free (Carleson type) interpolation theorem for polynomials of a given degree
Keywords :
Tadmor and Ritt conditions , Functional calculus , Power bounded , Cauchy–Stieltjes integrals , Basis and unconditional basis constants , Carleson type free interpolation by polynomials , Multipliers
Journal title :
Journal of Functional Analysis
Serial Year :
2004
Journal title :
Journal of Functional Analysis
Record number :
761765
Link To Document :
بازگشت