Title of article :
Ideals of operators and the metric approximation property
Author/Authors :
Vegard Lima، نويسنده , , ?svald Lima، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
23
From page :
148
To page :
170
Abstract :
We prove that a Banach space X has the metric approximation property if and only if F(Y,X), the space of all finite rank operators, is an ideal in L(Y,X), the space of all bounded operators, for every Banach space Y. Moreover, X has the shrinking metric approximation property if and only if F(X,Y) is an ideal in L(X,Y) for every Banach space Y. Similar results are obtained for u-ideals and the corresponding unconditional metric approximation properties.
Keywords :
Metric approximation property , Spaces of operators , Operator ideals
Journal title :
Journal of Functional Analysis
Serial Year :
2004
Journal title :
Journal of Functional Analysis
Record number :
761769
Link To Document :
بازگشت