Title of article :
Compactness via symmetrization
Author/Authors :
Almut Burchard، نويسنده , , Yan-Guo Wang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Abstract :
Consider two types of translation-invariant functionals I and J on Rm, and a sequence of functions fn whose corresponding symmetric rearrangements f∗n are convergent. We show that fn themselves converge up to translations if either limn→∞I(fn)=limn→∞I(fn∗) or limn→∞J(fn)=limn→∞J(fn∗). These compactness results lead to applications in variational problems and stability problems in stellar dynamics.
Keywords :
Stellardynamics , Concentration compactness , Symmetric rearrangement , Dynamical stability , Sobolev inequality , Hardy-Littlewood-Sobolev inequality , Euler-Poisson system , Vlasov-Poisson system
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis