Title of article :
Transportation cost inequalities on path and loop groups
Author/Authors :
Shizan Fang، نويسنده , , Jinghai Shao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
25
From page :
293
To page :
317
Abstract :
Let G be a connected Lie group with the Lie algebra G. The action of Cameron–Martin space H(G) on the path space Pe(G) introduced by L. Gross (Illinois J. Math. 36 (1992) 447) is free. Using this fact, we define the H-distance on Pe(G), which enables us to establish a transportation cost inequality on Pe(G). This method will be generalized to the path space over the loop group Le(G), so that we obtain a transportation cost inequality for heat measures on Le(G).
Keywords :
H-distance , loop groups , Wasserstein distance , Heat measures , Girsanov theorem
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
761909
Link To Document :
بازگشت