Title of article :
A Liouville-type result for quasi-linear elliptic equations on complete Riemannian manifolds
Author/Authors :
Stefano Pigola، نويسنده , , Marco Rigoli، نويسنده , , Alberto G. Setti، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
33
From page :
400
To page :
432
Abstract :
We extend a Liouville-type result of D. G. Aronson and H. F. Weinberger and E.N. Dancer and Y. Du concerning solutions to the equation pu = b(x)f (u) to the case of a class of singular elliptic operators on Riemannian manifolds, which include the -Laplacian and are the natural generalization to manifolds of the operators studied by J. Serrin and collaborators in Euclidean setting. In the process, we obtain an a priori lower bound for positive solutions of the equation in consideration, which complements an upper bound previously obtained by the authors in the same context
Keywords :
A priori estimates , Volume growth , maximum principles , Quasi-linear elliptic inequalities
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
761936
Link To Document :
بازگشت