Title of article :
The impact of temperature and gas-phase oxygen on kinetics of in situ ammonia removal in bioreactor landfill leachate
Author/Authors :
Nicole D. Berge، نويسنده , , Debra R. Reinhart، نويسنده , , John D. Dietz، نويسنده , , Tim Townsend، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
8
From page :
1907
To page :
1914
Abstract :
Microcosm experiments aimed at defining a rate equation that describes how different environmental conditions (i.e., gas-phase oxygen concentrations, temperature and ammonia concentration) may impact in situ ammonia removal were conducted. Results indicate that ammonia removal can readily occur at various gas-phase oxygen levels (between 0.7% and 100%) and over a range of temperatures (22, 35 and 45 °C). Slowest rates occurred with lower gas-phase oxygen concentrations. All rate data, except at 45 °C and 5% oxygen, fit well (r2=0.75) to a multiplicative Monod equation with terms describing the impact of oxygen, pH, temperature and ammonia concentration. All ammonia half-saturation values are relatively high when compared to those generally found in wastewater treatment, suggesting that the rate may be affected by the mass transfer of oxygen and/or ammonia. Additionally, as the temperature increases, the ammonia half-saturation value also increases. The multiplicative Monod model developed can be used to aid in designing and operating field-scale studies.
Keywords :
Bioreactor landfillAerobicAmmoniaNitrificationDenitrification
Journal title :
Water Research
Serial Year :
2007
Journal title :
Water Research
Record number :
764396
Link To Document :
بازگشت