Title of article :
Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters
Author/Authors :
David G. Bourne، نويسنده , , Robert L. Blakeley، نويسنده , , Peter Riddles، نويسنده , , Gary J. Jones، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1×106 cell/mL) treatments of river water dosed with microcystin LR (>80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1×102—1×105 cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR. Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies.
Keywords :
16S rDNAPCRSphingomonas sp.Microcystin LRBiodegradationSlow sand filtration
Journal title :
Water Research
Journal title :
Water Research